
Implementation of Home-based lazy release consistency system for a
distributed application

Zar Zar Moe, Thinn Thu Naing
zarzarmoe.88@gmail.com, ucsy21@most.gov.mm

Abstract

Distributed processing has more and more
important and attractive with progress in the areas
of computer network and distributed system.
Database management system typically allows many
transactions to access the same database at the same
time. When multiple users are simultaneously
updating over a shared database, data integrity and
consistency problem become arise. This system
database is stored on single server machine and copy
of this database is stored on multiple client cache.
Consistency control is performed on those databases.
The goal of this system is to prevent inconsistent
retrievals among users who are simultaneously
accessing on share database. This system will
implement the Home-based lazy release consistency
control and vector timestamp synchronization by
using train ticket sales system as case study.

1. Introduction

The problem of using shared data is that if the data
has been modified in the meantime, modifications
will not have been propagated to cached copies,
making those copies out of date. The user always for
want of the latest version of data, we need to do
something about concurrent access to guarantee state
consistency. In real time database system that is
necessary to use consistency controls system to
manage correctness and accuracy of data. So,
consistency control is the important part of
distributed system. Distributed system has two
consistency models. There are data centric
consistency model and client centric consistency

model.

2. Data Centric Consistency Model

A consistency model is a contract between a
distributed data store and its processes. If the
processes obey the rules, the data store will perform
correctly. Data centric consistency model divided
into two part of consistency models. These are Strong
consistency models and Weak consistency models.

 At strong consistency model, operations on
shared data are synchronized. Strong consistency
models are strict consistency, sequential consistency,
causal consistency and FIFO consistency.

 At weak consistency model,
synchronization occurs only when shared data is
locked and unlocked. Weak consistency models are
general weak consistency, release consistency and
entry consistency [5].

To avoid the disadvantage of release
consistency control and to implement the lazy release
consistency control, home-based lazy release
consistency approach is used in this system. We
present two main control algorithms in this system,
they are:

(i) Server Control Algorithm
(ii) Client Control Algorithm

2.1. Home-based lazy release consistency

Home based lazy release consistency is a simple
home based multiple writer protocol that implements
LRC. The home node of the data (server) contains its
master copy. This home node always hosts the most
updated contents of the data, which can then be
fetched by a non-home node (clients) that need an
updated version. At a release, which marks the end of
a critical section, a processor immediately generates
the copy of data that it has modified since its last
release. It then sends this copy of update data to their
home processor, where they are immediately applied
to the home’s data. The home’s data is never invalid,
but it may be written protected. The copy of update
data can be discarded by the creating and home
processor as soon as it is applied to the home
processor’s data. The main advantage of HRC over
LRC is that after communicating copy of data to the
homes, they can be discarded [2,3,4,5].

2.2. Vector Timestamps synchronization

We use vector timestamps to indicate which user

to allow for data modification. Vector timestamps are
managed like vector clocks. Send and receive events

are replaced by release and acquire (of the same lock)
respectively. A lock grant message (that is sent from
releaser to acquirer to give acquire the exclusive
ownership) contains the current timestamp of the
releaser [1,5].

• Just before executing a release or acquire in
p: Vp[q]:= Vp[q] + 1

• A lock grant message m is time-stamped
with t(m)=Vp.

• Upon acquire for every q: Vp[q]:= max{
Vp[q], t(m)[q] }

2.3. Server Control Algorithm with Home-
based Lazy Release Consistency

//When the users request to read or write
operation, the system check:

Begin
1. If read operation then

 begin
-sends grant read lock message to
the user
-sends latest data and its event
timestamp Tj to the user

 end
Else If write operation then
 begin

If the item is already write locked
then

-sends wait message to the user
and put on a queue

Else
-sends grant write lock
message to the user

 end
 End

2. If receive update from the client then
 begin

If waiting user then
-sends copy of update and
event time Tj=max (Ti, Tj) to
the waiting users
-update database and event
time Tj=max (Ti, Tj)

 Else
 -update database and event
 time Tj=max(Ti, Tj)

 end
 End

3. If receive release read or write lock message
then
 begin

If waiting user in queue then
-sends grant write lock
message to the user

 Else
-sends grant read lock message
to the user

 end
 End

End

2.4. Client Control Algorithm with Home-
based Lazy Release Consistency

Begin

1. If read operation then
 begin

-fetch data from the server (if
needed)
-receive update data and event time
Ti=max (Ti, Tj)
-sends release read lock message to
the server

End

2. If write operation then
 begin

-execute the buying process
-sends update data and its update
time Ti to the server
- sends release write lock message
to the server

End

3. If receive update from the server then
 begin

-update the local cache and event
time Ti=max (Ti, Tj)

 End

End

2.5. Use case for Read-Read condition
between two clients

When client1 request to read data, client1’s cache
will fetch data from server, server responses update
data. Similarly, when client2 requested to read the
same data, client2’s cache will fetch data from server,
server responded the update data. If client1 sends

release lock message, then server check waiting user
in queue. If user is waiting to write request, then
server allow buying ticket.

Figure 1. Reading phase

Note: RR - read request
 Res – response

2.6. Sequence diagram for Read-Read
condition between two clients

In this sequence diagram, when client1 request to
read ticket information, server sent update data at
latest event time Tj and then client1 is update its
event time. Similarly, when client2 requested to read
the same data, server returned the update data at
latest event time Tj. So, client2 is updating its event
time. If client1 sends release lock message, then
server check waiting user in queue. If user is waiting
to buy ticket, then server allow to buy ticket.

2.7. Use case for Write-Write condition
between two clients

When client1 request to write data, server check
another user is writing data. If no user isn’t writing
data, server allows to write data. So, client1 write
data and update locally. Then client1 synchronizes
data to server and update event time. While client1 is
writing data, if client2 requested to write data then
server will send wait message to the client2. When
client1 has updated data, server checked waiting user
is existed. If waiting user existed then server
synchronizes data to client. When client2 receives the
update data, it updates cache locally. At the time,
server checked another user is waiting to write data.
If user is waiting to write data then server allows
writing data.

Figure 2. Waiting phase

Figure 3. Updating phase

Note: WR - write request
 Res – response

2.8. Sequence diagram for Write-Write
condition between two clients

In this sequence diagram, when client1 requested
to buy ticket, server check another user is buying
ticket. If no user isn’t buying ticket, server allows to
buy ticket. So, client1 buy ticket and update locally.
Then client1 synchronizes data to server and update
event time. While client1 is buying ticket, if client2
requested to buy ticket then server will send wait
message to the client2. When client1 has bought
ticket, server checked waiting user is existed. If
waiting user existed then server synchronizes data to
client at latest event time Tj. When client2 receives

WR wait

Res

WR wait

grant

WR WR
Client 1

Client 2

Client 1 cache

server

Client 2 cache

synchronize grant

WR
WR

synchronize update
Client 1

Client 2

Client 1 cache

server

Client 2 cache

Fetch data

Fetch data

Res

Res

RR
Res

Res

RR
Client 1

Client 2

Client 1 cache

server

Client 2 cache

Return No

Release read
lock message

Check waiting
user in queue

Release read lock message

Ti2=max
 (Ti2,Tj)

Send grant read lock
message & (data, Tj)

Request to read
ticket information Ti1=max

 (Ti1,Tj)

Send grant read lock
message & (data, Tj)

Request to read ticket
information

Server

Client 1 Client 2 Data Store

the update data, it updates cache locally. At the time,
server checked another user is waiting to buy ticket.
If user is waiting to buy ticket then server allows
buying ticket.

2.9. System overview

 This system is an implementation of proving data
centric consistency model using home-based lazy
release consistency approach. It is a consistency
control schemes for client server system. Client
acquires a lock, and then client fetches data from
server machine, and then execution the update

locally. When client release a lock, a processor
immediately generates the copy for the update data. It
then sends these update data to their home processor.
When other client fetch the same data from server
machine, the home processor of that data responds
the most updated contents of the data. Train ticketing
sales system as case study is used to generate
consistent transactions for the shared database
system.

2.10. Performance evaluation of the system

 In this system, user can search the
information about of the trip plan by choosing the
source, destination of the cities and the date of the
day, which user wants to travel. After satisfying the
result data, if user requests to buy ticket, server
checks another user is buying ticket and waiting user
in queue. If no user is buying and no waiting user in
queue, then user can buy the ticket. If the user is sure
to buy the schedule, user must fill schedule number,
seat type, number of seat, user name, nuc-no, phone,
e-mail. Thereupon valid data added in the server
database as shown in table 1.

log_id client timestamps validate
1 1 12:54:54 Invalid
2 1 12:54:59 Valid
3 2 12:55:14 Invalid
4 2 12:56:20 Valid
5 1 12:57:18 Invalid

Table 1: Dynamic application performance

While the client1 reserves the ticket, another
user (client2) will wait in the queue. Thereupon
invalid data added in the server database as shown in
table 1. After client1 reserves the tickets, the
schedule’s available seat will be changed and its
database will be updated, and then client1
synchronizes to the server. Therefore, schedule’s
available seat number which user’s bought ticket
number (eg.11) changed in server database and

Copy
update &
Ti2=max
 (Ti2,Tj)

Update
(data, Ti1)

Tj=max(Ti2,Tj)

Check waiting
user

Update
(data, Ti2)

Check waiting
user in queue

Return No

Sends update
(data, Ti2)

Buying process
& update cache

Send grant write
lock message

Check waiting
user in queue

Update
cache &
Ti2=max
 (Ti2,Tj)

Sends update
(data, Tj)

Release read lock message
Return Yes

Return Yes

Check data is
write locked

Return No

Check data is
write locked

Return Yes

Release read
lock message

Request to
buy ticket

Sends update (data, Ti1)

Send wait message
& wait in queue

Buying process
& update cache

Send grant write lock message

Request to buy ticket

Server

Client 1 Client 2 Data Store

Read/Write

Client
1

Client

2

Client
n

Client 1
cache

Client 2
cache

Client n
cache

Home-
based
lazy
release
consist-
ency
control
process

Data
Store

client1 database but client2 database does not change
as shown in table 2, table 3, and table 4.

Seat
_id

Schedule
_ id

Seat
type

Available
seat

price

1 1 upper 50 3100
2 1 normal 150 1550
3 2 upper 50 3100
4 2 normal 150 1550
5 3 upper 50 3100
6 3 normal 150 1550
7 4 upper 46 1900
8 4 normal 150 950
9 5 upper 50 1900

10 5 normal 150 950
11 6 upper 48 1500
12 6 normal 150 800
13 7 upper 48 1300

Table 2: Database changed in client1

Seat
_id

Schedule
_ id

Seat
type

Available
seat

price

1 1 upper 50 3100
2 1 normal 150 1550
3 2 upper 50 3100
4 2 normal 150 1550
5 3 upper 50 3100
6 3 normal 150 1550
7 4 upper 46 1900
8 4 normal 150 950
9 5 upper 50 1900

10 5 normal 150 950
11 6 upper 48 1500
12 6 normal 150 800
13 7 upper 48 1300

Table 3: Database changed in server

Seat
_id

Schedule
_ id

Seat
type

Available
seat

price

1 1 upper 50 3100
2 1 normal 150 1550
3 2 upper 50 3100
4 2 normal 150 1550
5 3 upper 50 3100
6 3 normal 150 1550
7 4 upper 46 1900

8 4 normal 150 950
9 5 upper 50 1900

10 5 normal 150 950
11 6 upper 50 1500
12 6 normal 150 800
13 7 upper 48 1300

Table 4: Database unchanged in client2

 If waiting user in queue, server synchronizes
to the waiting user (client2). Thereupon client2
database changed as shown in table 5.

Seat
_id

Schedule
_ id

Seat
type

Available
seat

price

1 1 upper 50 3100
2 1 normal 150 1550
3 2 upper 50 3100
4 2 normal 150 1550
5 3 upper 50 3100
6 3 normal 150 1550
7 4 upper 46 1900
8 4 normal 150 950
9 5 upper 50 1900

10 5 normal 150 950
11 6 upper 48 1500
12 6 normal 150 800
13 7 upper 48 1300

Table 5: Database changed in client2

2.11. Sequence diagram for system
workflow

 Schedule

result
Schedule
result

Search
schedule

Search
schedule

Client1 Client2 Server

DB DB DB

 This system use vector timestamps to
indicate which user to allow for data modification. In
this sequence diagram, client1 is doing first event and
client2 is doing second event at star (*). In this
system, maximum time event is first event doing. So,
first event is allowed for buying and second event is
waiting.

3. Conclusion

 This system aim to show how consistent data can
be in shared data by updating multiple users. User
may have up-to-date information by means of this
proposed system. This system is essential for
Myanmar railway transportation in Yangon to
Mandalay, Naypyitaw, Mawlamyaine, and Pyay
because it save time, voluminous paper work and
avoids human errors. This system can be effectively
used for the staff on an existing system during
calculating and maintaining.

4. References

[1] George Colouris, Jean Dollimore, Tim Kindberg: "
Distributed System Concepts and Design", Third edition,
www.personedu.com, Person Education Ltd, Edinburgh
Gate, Harlow, Essex CM20 2JE England, ISPNO 0-201-
61918-0, 2010.

[2] Alan L. Cox , Eyal de Lara , Charlie Hu , and Willy
Zwaenepoel, "A Performance Comparison of Homeless
and Home-based Lazy Release Consistency Protocols in
Software Shared Memory"

[3] L.Iftode, "Home-based shared virtual memory", PhD
thesis, Department of Computer Science, Princeton
University, June 1998.

[4] Vadim Iosevich and Assaf Schuster, "Multithreaded
Home-based Lazy Release Consistency over VIA"

[5] Andrew S.Tanenbaum, and Maarten Van Steen,
"Distributed systems principles and paradigms",
International edition, Prentice Hall, New Jersey, 2002.

Synchronize
Synchronize

Success

Success

Buying

Allow
Allow

Synchronize Yes

Is waiting
user?

No

Is lock?

Request lock
Want to
buy ticket

Synchronize
Synchronize

Wait Wait
Yes

Is lock?

Request lock

Buying

Allow
Allow

Is waiting
user?

No

Is lock?
Request lock

* Want to
buy ticket

* Want to
buy ticket

No

